Search results for "Relative velocity"
showing 10 items of 13 documents
Use of second-order sliding mode observer for low-accuracy sensing in hydraulic machines
2018
Low-accuracy sensing is very common for the large hydraulic machines and does not allow for directly measuring the relative velocity which can be, otherwise, required for the control and monitoring purposes. This paper provides a case study of designing the second-order sliding mode observer based on the super-twisting robust exact differentiator. The nominal part of the system dynamics is derived from the simple available system measurements and incorporated into the observer structure. Parasitic by-effects, arising from the sensor sampling, quantization, and non-modeled distortions due to mechanical sensor interface, are shown as the main causes of hampering the final (steady-state) conve…
Dynamical efficiency of collisionless magnetized shocks in relativistic jets
2010
The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to- thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the co…
Application of Positron Annihilation Spectroscopy to Studies of Subsurface Zones Induced by Wear in Magnesium and Its Alloy AZ31
2011
Interaction of sliding bodies is an important aspect of numerous applications and subject of many studies (Solecki, 1989). Generally, when two surfaces are loaded together the true contact area is much smaller than the apparent one. The true contact is only at high points or asperities of the surfaces where the interactions in the atomic scale take place. Relative movement between the surfaces leads to friction and wear processes. The rate of wear is controlled by the load, the relative velocity and the behaviour of the material near asperities. The region of asperities can be plastically deformed and the stress is transported to the deeper laying region that becomes elastically deformed (F…
An algorithm for computing geometric relative velocities through Fermi and observational coordinates
2013
We present a numerical method for computing the \textit{Fermi} and \textit{observational coordinates} of a distant test particle with respect to an observer. We apply this method for computing some previously introduced concepts of relative velocity: \textit{kinematic}, \textit{Fermi}, \textit{spectroscopic} and \textit{astrometric} relative velocities. We also extend these concepts to non-convex normal neighborhoods and we make some convergence tests, studying some fundamental examples in Schwarzschild and Kerr spacetimes. Finally, we show an alternative method for computing the Fermi and astrometric relative velocities.
Thermal conduction by dark matter with velocity and momentum-dependent cross-sections
2014
We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\alpha$ and $\kappa$ for cross-sections that go as $v_{\rm rel}^2$, $v_{\rm rel}^4$, $v_{\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\rm rel}^{-2}$ dependence can sig…
Kinematic relative velocity with respect to stationary observers in Schwarzschild spacetime
2013
We study the kinematic relative velocity of general test particles with respect to stationary observers (using spherical coordinates) in Schwarzschild spacetime, obtaining that its modulus does not depend on the observer, unlike Fermi, spectroscopic and astrometric relative velocities. We study some fundamental particular cases, generalizing some results given in other work about stationary and radial free-falling test particles. Moreover, we give a new result about test particles with circular geodesic orbits: the modulus of their kinematic relative velocity with respect to any stationary observer depends only on the radius of the circular orbit, and so, it remains constant.
Numerical simulations of the internal shock model in magnetized relativistic jets of blazars
2015
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculatio…
On the dynamic efficiency of internal shocks in magnetized relativistic outflows
2009
We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization $\sigma\simeq 0.1$), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Thus, the dynamic efficiency…
Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear mat…
2012
We show new data from the $^{64}$Ni+$^{124}$Sn and $^{58}$Ni+$^{112}$Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechani…
A note on the computation of geometrically defined relative velocities
2011
We discuss some aspects about the computation of kinematic, spectroscopic, Fermi and astrometric relative velocities that are geometrically defined in general relativity. Mainly, we state that kinematic and spectroscopic relative velocities only depend on the 4-velocities of the observer and the test particle, unlike Fermi and astrometric relative velocities, that also depend on the acceleration of the observer and the corresponding relative position of the test particle, but only at the event of observation and not around it, as it would be deduced, in principle, from the definition of these velocities. Finally, we propose an open problem in general relativity that consists on finding intr…